Effective treatments for de novo and treatment-emergent small-cell/neuroendocrine (t-SCNC) prostate cancer represent an unmet need for this disease. Using metastatic biopsies from patients with advanced cancer, we demonstrate that delta-like ligand 3 (DLL3) is expressed in de novo and t-SCNC and is associated with reduced survival. We develop a PET agent, [89Zr]-DFO-DLL3-scFv, that detects DLL3 levels in mouse SCNC models. In multiple patient-derived xenograft models, AMG 757 (tarlatamab), a half-life-extended bispecific T-cell engager (BiTE) immunotherapy that redirects CD3-positive T cells to kill DLL3-expressing cells, exhibited potent and durable antitumor activity. Late relapsing tumors after AMG 757 treatment exhibited lower DLL3 levels, suggesting antigen loss as a resistance mechanism, particularly in tumors with heterogeneous DLL3 expression. These findings have been translated into an ongoing clinical trial of AMG 757 in de novo and t-SCNC, with a confirmed objective partial response in a patient with histologically confirmed SCNC. Overall, these results identify DLL3 as a therapeutic target in SCNC and demonstrate that DLL3-targeted BiTE immunotherapy has significant antitumor activity in this aggressive prostate cancer subtype.

Learn More

Immunotherapeutic Targeting and PET Imaging of DLL3 in Small-Cell Neuroendocrine Prostate Cancer

CANCER RESEARCH
January 2023

Previous
Previous

Heterogeneity in NECTIN4 Expression Across Molecular Subtypes of Urothelial Cancer

Next
Next

Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy